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"' Abstract

Assay data are often fit by a nonlinear regression model incorporating

heterogeneity of variance, as in radioimmunoassay, for example. Typically,

the standard deviation of the response is taken to be proportional to a

power of the mean. There is considerable empirical evidence suggesti;:g

that for assays of a reasonable size, how one estimates the parameter does

not greatly affect how well one estimates the mean regression function. An

additional component of assay analysis is the estimation of auxillary

constructs such as the minimum detectable concentration, for which many

definitions exist; we focus on one such definition. The minimum detectable

concentration depends both on and the mean regression function. We

compare three standard methods of estimating the parameter $ due to Rodbard

(1978), Raab (1981a) and Carroll and Ruppert (1982b). When duplicate counts

are taken at each concentration, the first method is only 20% efficient

asymptotically in comparison to the third, and the resulting estimate of the

minimum detectable concentration is asymptotically 3.3 times more variable

for first than the third. Less dramatic results obtain for the second

estimator compared to the third; this estimator is still not efficient,

however. Simulation results and an example are supportive of the asymptotic

theory. w* f t  • ' " ' .. "
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1. Introduction

The ana:ysis of assay data has long been an important problem in clinical

chemistry and the biological sciences; see, for example, Finney (1964) and

Oppenheimer, et a!. (1983). The most common method of analysis is to fit a

nonlinear regression model to the data. Much recent work suggests that these

data can be markedly heteroscedastic; in radioimmunoassay, for example, this

characteristic has been observed repeatedly and incorporated into the analysis

as discussed by Finney (1976). Rodbard (1978), Tiede and Pagano (1979) and

Raab (1981a,b) and Butt (1984). Such analyses are for the most part special

cases of the heteroscedastic nonlinear regression model. Specifically, we

observe independent counts Y.. at concentrations x. for i = 1...... N and j =1J 1

1 .... M. with mean and variances given byI

2
(1.1) E Y. = p. f(xi A) var(Yi ) = {og(xi.,O))'

where p is the unknown regression parameter vector of length p and 6 is the

structural variance parameter. A fairly standard model for the mean in a

radioimmunoassay is the four parameter logistic model

(1.2) f(x,A) = A1 + (A- A)/[l - exp({ 4 (log x - A 3 )I].

Almost without exception, the variances have been modeled as functions of the

mean response, usually either as a quadratic or as a power of the mean, e.g..

(1.3) a. - Standard deviation of Y = g(x i'p,9) af(xip)

The fundamental contribution of Rodbard and other workers has been to

".."" r'" '"/_'"" -:'; 7 " ""' " , "' ""' ' ' ""-,F -' -%
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incorporate the heterogeneity into the analysis; the resuit of their

contribution has been a great improvement in the quality of statistical

analysis.

Methods of estimating P and 9 are discussed in Section 2. The most common

method of estimating p3 is generalized least squares. By various devices, one

forms estimates 0. of the variances 0. and then estimates P3 by weighted least1 1

squares. As discussed by Jobson and Fuller (1980) and Carroll and Ruppert

(1982b), under quite general circumstances for large enough sample sizes how

one estimates the variance does not matter, and /3 is asymptotically normally

(2/N -1
distributed with mean P3 and variance (a /N )S G , where NS is the total sample

size and

(1-4) S = N - Z i (f (x.M.)f (x 'A) T g (x.9
G S i=ljl { 1 /f  i ) i ,

and f the derivative of f with respect to C3. It has been shown that for

estimation of P, how one estimates the variance function, in particular the

parameter 9, has only a second order effect asymptotically, see, for example,

Rothenberg (1984). The general asymptotic result (1.4) can be optimistic, but

in our experience for RIA and ELISA assays, the asymptotics are often rather

reasonable.

What the previous discussion suggests is that if our only interest is to

-" estimate A, then in many assays the method of estimating the variance function

may not be crucial. However, the assay problem does not always stop with

estimating /3, but rather also addresses issues of calibration. These issues

include confidence intervals for a true x* given a new Y*, the classic

calibration problem. Also of interest is determining the sensitivity of the

assay using such concepts as the minimum detectable concentration of Rodbard

iN
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(1978) and the critical level, detection level and determination limit of

Oppenheimer, et a!. (1983). A unique feature of these calibration problems is

that the efficiency of estimation is essentially determined by how well one

estimates the variance parameter e; the purpose of this paper is to justify

this claim.

To the best of our knowledge, our paper is one of the first which shows

explicitly that how one estimates the structural variance parameter 9 can be

important in determining the behavior of estimates of interesting quantities.

Far from being only a nuisance parameter as it is often thought to be, 9 is a

quantity which has an important role in the analysis of calibration and

prediction problems. In addition, 9 can be important in itself, as in for

example off line quality control, see Box and Meyer (1986). In this latter

application, one might want to find the levels of x which give minimum variance

subject to a constraint on the mean.

Our general qualitative conclusion is that how well one estimates 9 really

matters. Instead of pursuing a fully general theory, we focus on the

determination of minimum detectable concentration. There .s no unique

definition of this concept, and for illustration we pick one of the possible

candidates.

Definition. Let V(x,M) be the mean response based on M replicates at

concentration level x. taken independently of the calibration data set {Yij).

Let f(O.,) be the expected response at zero concentration based on the

calibration data set. The minimum detectable concentration x at level (l-a)c

is the smallest concentration x for which

(1.5) Pr{Y(x.M) > f(O,p)} > I -a.

, % % '% " - % -" j ' % ' % ,j ' - , ' % ' .' , ' ' , - - . - - . . '_ - . ." . " . " . " . - . . . . . . -



Qualitatively, the minimum detectable concen*lration is arrived at as

illustrated in Figure 1. One first constructs the estimated regression

function f(xp), and then attaches to it an estimated lower (1-a) confidence

line for the new response 7(xM) at concentration x based on M replicates.

Starting from the estimated zero concentration mean f(O,3), one does a standard

calibration by drawing a horizontal line until it intersects the lower

confidence interval, the value of x at which this intersection occurs being the

minimum detectable concentration. In Figure 1, we illustrate why getting a

good handle on the variance function is important. Assuming as is natural that

the variance is smallest where the mean count is smallest, we see that the

prediction interval based on an unweighted analysis is much too conservative

for low concentrations. This translates immediately into a large bias in the

estimated minimum detectable concentration. Even if the heterogeneity of

variance is taken into account, Figure 1 makes clear that a poor estimate of 0

can have considerable impact on the estimated minimum detectable concentration.

We now outline the standard method for estimating the minimum detectable

concentration. To be more precise and follow the outline given in the

preceeding paragraph, one would replace the t-percentage point to follow with

an asymptotically negligible correction based on the limit distribution of the

estimates of (9, ,o). This program has not been followed in practice since the

last limit distribution has been unknown, and in any case the effect is

asymptotically unimportant. If t(d.,N s-p) is the (l-a) th percentile of the

t-distribution with N -p degrees of freedom, the usual estimate x of xis c c

satisfies

1"6) (f(x .1) - f(O.(c}c = t(a, S-p)) (C g (x .9)'M - var[f(O.p)]).
cS c

* '¢./&
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where varif(0,,)] is an estimate of the variance of f(0,P) and a is the asual

mean squared error from the weighted fit:

-2 1N M 2 -28(N -P) Z Z ( - f(x.ifl f-(x;, )
Si= j=l ij I I

in Section 2 of this paper, we discuss three standard methods for

estimating the variance parameter 9. Under relatively general conditions, two

of these can be quite a bit less efficient than the third, and we discuss in

Section 3 how this difference translates theoretically to the minimum

detectable concentration problem. In Sections 4 and 5, we present a small

Monte-Carlo study and an example to illustrate the results. The key conclusion

4s that how one estimates 9 can affect the relative efficiency of estimated

quantities useful in the calibration of assays.

2. Methods of estimating mean and variance parameters

'The problem of estimating G in models (1.1) and (1.3) has been discussed

in many places in the literature. A nice introduction is given by Judge, et.

al. (1935, Chapter 11). More specialized and formal treatments include those

by Rodbard (1978), Jobson and Fuller (1980). Raab (1981a), Carroll and Ruppert

(1982b) and Davidian and Carroll (1986), although these only represent a

sampling of the possible selection. We focus our attention on three methods

with quite different motivations. For simplicity, we will discuss only the

case of equal replication M. M > 2. The first two methods require somp

replication.

N '
I4 J-
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2.1' Loa-linearized estimation

Model (1.3) implies upon taking logarithms that Lhe lug slanda:'d deviation

2;s linear in the log mean with slope e. Letting (Y. S.2} be the withir

concentration sample means and variances, this suggests that one estimate G as

the slope from regressing log S. on log Y.. If we denote this estimate as1 1.

e,, Rodbard (1978) suggests forming estimated standard deviations as the

sample mean to the power L and then applying weighted least squares to

estimate AG.

2.2 Modified maximum likelihood

Raab (1981a) suggests a method for estimating 9 using normal theory

maximum likelihood but without making any assumptions about the form of the

mean function. Raab assumes independence and proposes estimation of e by joint

maximization of the "modified" normal likelihood

_X 2 (m-1), 2 _m 2 2

721) N (27T0 g(P,9))) exp[-. (Y 2 (2c 2gwP .A))'1 =1 j 1 i

in the parameters C, 9, p1 ' '' where we have written g( .x.&) as W, i'9A

to emphasize the dependence of the variance function on the mean :esponiso. The

modification serves to make the estimator of c 2 unbiased Estimation f i ma"

now proceed via weighted least squares in a fashion dna lagous to the

log-linearized method.
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2.3 Pseudo-likelihood

For given 9, the pseudo-likelihood estimator of 9 is the normal theory

maximum likelihood estimate, maximizing

N ZM
(2.2) Z logjg(x. ,9 ))

Nz zM 2 -5

(N,'2)log[,N Z . (Y.. t x. 2 g(x. ,) 2

see Carroll and Ruppert (1982b). One can devise many ways to estimate 9 and 3

jointly. For example, one can

(i) Set A = unweighted least squares;

(ii) Estimate a by pseudo-likelihood;

(iii) Form estimated variances g-(x i, A,9);

(iv) Re-estimate 8 by weighted least squares;

(v) Iterate (ii) - (iv) one or more times.

The :umber of cycles f of this algorithm is the number of times one hits step

(iv). One can do step (ii) by direct maximization or by weighted least squares

as in Davidian and Carroll (1986).

A key point to note is 'hat pseudo-likelihood requires no replication and

hence easily copes with unequal replication.

2.4 Other methods

Various other methods have been proposed; see, for example, Jobson and



Fuller (1980) and Box and Hi>3 (1974). Robust variance function estimatun

methods have also been developed, see Carroll and Ruppert (1982b) and Giltinan.

Carroll and Ruppert (1986).

A final method of jointly estimating (p,}) is normal theory maximum

likelihood. There are important issues of robustness which complicate routine

use of this method, see McCullagh (1983). Carroll and Ruppert (1982a) and

Davidian and Carroll (1986) for further discussion. For assay data,

pseudo-likelihood and maximum likelihood estimates of 9 have similar asymptotic

behavior, and we will use the former largely for its ease of calculation.

3. AsvmDtotic theory

:..

The asymptotic theory of the log-linearized estimator 9LL is complicated

because regressing log S. on log V. is not a standard linear regression
i 1'

problem. Likewise, the asymptotic theory for the modified maximum likelihood

estimator 9MML is complicated because the dimension of the parameter space

increases with X. Both of these problems are nonlinear functional

errors-in-variables problems of kind addressed by Wolter and Fuller (1982).

Amemiya and Fuller (1985) and Stefanski and Carroll (1985). The error in

estimating /i. by Y. in 9 or by the joint estimator pi in 9MM L causes these1 i. OLL1 ML

estimators to be biased asymptotically. This bias is typically negligible.

because in most of the assays we have seen the parameter c in (1.1) is quite

small. Thus, empirically it makes sense to define an asymptotic theory where

the sample size NS = NM becomes large and o simultaneously is small. Beca:se

in most assays the number of replicates M is small, we shall let N and a

0 while keeping M fixed; Raab (1981a) suggests that M = 2 is the most common

- -" "
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case.

It is important for the reader to understand that letting N - and a 0

simultaneously is dictated by the problems of studying the log-linearized

estimator 9 LL and the modified maximum likelihood estimator 9 MML  the

pseudo-likelihood estimator 9 has a routine asymptotic theory even for fixedPr.

(a.

The asymptotic distribution of these estimates of 9 can be obtained from

the general theory of Davidian and Carroll (1986). Define

; =  {Yij f(x i,/)},'(of(x., ) } , v. log f(x. '/ 1 '

2 -IM 2 2 1 22q; = f.- ) = j " } Ov = lim . (N-1)-lZi=llV - V)

i=l ij A1I

1/2
Theorem 1. As N and a -* 0 simultaneously and N 1 = C(1), if the random

variables {. ) are symmetric and independent and identically distributed, then

1/2 - )2
N (9 LL - ) (O. var(log qi)/(4a 2),

' 2)
N (9- 9) N(O, var(qi)/(4 v1,

1,' 2 - 9) 2 2
N (9PL - ) N(O, var(l ij)(4> )). 0

Under these asymptotics, the symmetry condition is necessary to ensure that the

asymptotic distributions of 9LL and 9MML have zero mean; symmetry is,

unnecessary for the result for 9 PL Sadler and Smith (1985) note that the

estimator obtained by replacing pi by Y. in (2.1) and maximizing in 0 2 and 9

is virtuaily indistinguishable in practice from the full modified maximum

: .- .--, , .-" .. .- ." . ." - , .." .. ."-, . . . - - .. .• . ., . ." -. -- ..' .-. . v " , -.' ,"." , -. ."." . -",. -.". " " .%. "



"ikelihood estimator of 9. It can be shown that these two estimators are

asymptotically equivalent under the above asymptotics and that this second

V estimator is equivalent to the pseudo-likelihood estimator with f(xi C)
replaced everywhere by V. in (2.2); thus, as an approximation to M one

relcdevrwee yYi MML.

could compute the pseudo-likelihood estimator using Y.

From Theorem 1, the asymptotic relative efficiencies of the log-linearized

method and the modified maximum likelihood method relative to pseudo-likelihood

can be computed. Note that

2
(3.1) var(q.) = var(. .)/M + 2/(M(M-1)}

1 so that 9 has uniformly larger asymptotic variance than p for all M > 2
ML PL

regardless of the distribution of the ( ij}.

We have tabulated the relative efficiencies of 9LL and aXL to aPL for

various numbers of replications M, assuming normally distributed data.

Asymptotic relative efficiencies of estimators of 9 for small a

M 9 to 0 9 toe a to 9
LL t PL -MLL PL -LL MLL

) 2 0.203 0.500 0.405

3 0.405 0.667 0.608

4 0.535 0.750 0.713

9 0.783 0.889 0.881

10 0.804 0.900 0.893

.6

PI,%
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In our experience, these numbers slightly exaggerate the inefficiency of aLL

reLative to pseudo-likelihood, especially when the assay is rather small. For

duplicates M = 2. in two assay simulations, we have found that the variance

efficiency of the log-linearized method was 0.35 and 0.31; the former number is

reported in the next section. The asymptotic relative efficiencies of 9LL

relative to aeMML agree quite well with the efficiencies of 39%, 62% and 77% and

39%. 64% and 74% for M = 2, 3 and 4 :eported by Raab (1981a) and Sadler and

Smith (1985), respectively, in two Monte-Carlo studies. While modified maximum

likelihood represents an improvement over the log-linearized method, the theory

clearly points to the inefficiency of both the log-linearized and modified

maximum likelihood methods when the number of replicates is small and the data

are nearly normally distributed.

For the minimum detectable concentration, note that in (1.6) the term

-i
var{f(0,p)) is of the order (NM) and is hence rather small relative to all

the other terms. Of course, for normally distributed data, the solution to

(1.6) is the quantity x , wherec

(3.2) 0 (z(a))f2  (Xc,))/M - {f(XcJ) - f(OC)}2

c c

ans z(a) is the (I - a) th percentfle point of the standard normal distribution.

Here is the major result, the technical details for which are given in the

appendix. Define

-i N lo f- ,-(
(3.3) do = log f(O,p) - lim N Z log f(x P).

Theorem 2. Let x c(LL), x c(MML) and x c(PL) denote the estimated minimum

detectable concentrations using the log-linearized estimate 0 LL' the modified

'p •
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maximum likelihood estimate 9 MM and the pseudo-likelihood estimate 9p.

respectively. Then under regularity conditions, there is a constant A0 and a

sequence b for which

1,, 2 22 2
(3.4) b A N 'i(x (LL) - x o N(0, var( ij} varclog qiN.4 *c c 0 10 v

1/2 2 2 2 2
(3.3) b, A0 N (X (MML) - X),' N(, var(e.2i) varlqi v )

c c c 0 v

1 2 2 2
(3.6) b A N (X (PL) ax ,' N(0, var( i-){1 ) )I c ' 0 v

From (3.1), the asymptotic relative efficiency of the modified maximum

likelihood estimate to minimum detectable concentration relative to the

pseudo-likelihood estimate is

(3.7) var( 2 2 2 2 2

11 V 0 ii v 0 0

whLch is less than 1 for all M regardless of the value of var(t2j). Similarly,
iJ

the asymptotic relative efficiency of the log-linearized estimate of minimum

detectable concentration to the pseudo-likelihood estimate is

2 2 2 2 2 2 2
(3.8) var(A i Hv-d 0)/{a var(e.i.) Md var(log qi)}.

It follows from Theorem I and (3.7) and (3.8) that the ordering in efficiency

of estimated minimum detectable concentration is the same as the ordering for

estimating 9 and thus will favor pseudo-likelihood for normally distributed

data in the case of the log-linearized estimator and for all distributions in

the case of the modified maximum likelihood method. For distributions other

%% -. . .* . . . . . %
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than normal, calculations with other symmetric distributions such as double

exponential and various contaminated normal distributions show very few cases

where L is more efficient than pL, see Davidian (1986). The numerical
LL

2 2
efficiencies depend on the logarithm of the true means through d and o v For

example, in the simulation discussed in the next section, the asymptotic

relative efficiency of the log-linearized estimate is 27% for M = 2 and 63% for

M = 4.

The asymptotic theory thus suggests that inefficiencies in estimating the

variance parameter 9 translate into inefficiencies for estimating the minimum

detec-able concentration.

4. A simulation

To check the qualitative nature of the asymptotic theory, we ran a small

simulation. We restrict our focus here to the log-linearized method and

pseudo-likelihood.

The responses Yij were normally distributed with mean and variance

satisfying (1.2), (1.3), where A, = 29.5274, A2 = 1.8864, C3  
=  1.5793, A4 =

1.0022, 8 = 0.7 and a =.0872. The 23 concentrations chosen are given in Table

4. We studied the case M = 2 or duplicates and M = 4 or quadruplicates. For

each situation, there were 300 simulated data sets. A limited second

simulation was run with the larger value o = 0.17, but there did not appear to

be significant qualitative differences from the case reported here.

The estimators chosen were unweighted least squares for C, the Rodbard

log-I'nearized method and the pseudo-likelihood/generalized least squares

combination which we report only for 't 1 and 2 cycles of the algorithm. The

.% . . .. . . . .
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methods of estimating the minimum detectable concentration are as discussed in

Section 1. The estimates of 9 were constrained to lie in the interval 0 < i

1.50.

In Table I, we compare the estimators of 0 on the basis of bias and

variance. The biases are large relative to the standard error, so that

mean-squared error comparisons are artificial and dramatic. The bias in the

pseudo-likelihood estimate of 9 when doing only f = 1 cycles of the algorithm

has been observed by us in other problems. One sees here that the effect of

doubling the replicates from two to four for a given set of concentrations

improves the Monte-Curlo efficiency of the log-linearized estimate of a from

35% to 58%, compared to the theoretical asymptotic increase from 20% to 54%.

This example indicates that pseudo-likelihood estimation of 9 can in some

circumstances be a considerable improvement over the log-linearized method.

For the minimum detectable concentration we chose a = 0.05. For all of

the methods used in the study, the probability requirement (1.5) was easily

satisfied; rather than 95% exceedance probability, every case was more than

97%. The mean values of the minimum detectable concentrations are reported in

Table 2. with variances given in Table 3. Note that in both of these tables,

we give results for the case that 9 is known as well as estimated. The

relatively poor behavior of unweighted least squares is evident. To quote from

Oppenheimer, et al. (1983): "Rather dramatic differences have been observed

depending on whether a valid weighted or inappropriate unweighted analysis is

used." When the variance parameCer 9 is known, there ;.s little difference

between any of the weighted methods.

When 9 is unknown, there are rather large proportional differences. The

figures in Table 4 show that the mean minimum detectable concentration for the

iog-linearized method is 10% larger than for the pseudo-likelihood method based

log ., %Aaiedlre

.: L. ," .'S,-% . .Z.' ' ':?- ' "" ,'; "- -' , P " ,4.. , ' - -'""" -y. € ,
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on e = 2 cycles; whether the raw numerical difference is of any practical

consequence will depend on the context.

For M = 2 replicates, the pseudo-likelihood estimate of minimum detectable

-2
conentration with unknown 0 has mean 3.934 x 10 and standard deviation 0.05 x

-4 -2 -4
10 ; the corresponding figures for M = 4 are 2.722 x 10 and 0.028 x A0

Pi'oportionately, when 6 is unknown, the method of estimating it seems io have

important consequences for the estimate of minimum detectable concent:ratic2.

particularly in the variability of the estimate. For the case of duplicates.

the Monte-Carlo variance of pseudo-likelihood is only 37% as large as that

based on the log-linearized estimate, while the asymptotics suggest 27%,

increasing to 71% and 63% respectively for quadruplicates.

The point here is that the relative efficiency of the estimated minimum

detectable concentration can be affected by the algorithm used to estimate the

variance parameter 9.

5. An example

Differences among the three estimators of 9 and the subsequent estimators

of minimum detectable concentration which are reminiscent of the qualitative

implications of the asymptotic theory and simulation can be seen in the

following example. The data are from a radioimmunoassay and are presented in

Table 4. The analysis presented here is for illustrative purposes only: we do

not claim to be analyzing these data fully. Our aim is to exhibit the fact

that the three methods of analysis considered in this paper can lead to

nontrivially different results.

We assumed in al cases the model (1.2) and (1.3). For the full data set

%% . .-. .... . . .. -.
V.
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and reduced data sets considering a l possible permutations of duplicates

2(except one set for which an S . 0. complicating the application of the1
2

log--linearized method), we computed the estimates of . a and x using the

pseudo-likelihood and log-linearized methods and the estimate of Sadler and

S, Smith (1985) as described in Section 3 in place of the more computationaily

difficult modified maximum likelihood estimate. We also computed the estimate

of minimum detectable concentration based on ordinary least squares. The

results are given in Table 5.

An investigation of both the full and reduced data sets suggests that

there are no massive outliers and that design points 1, 22 and 23 are possible

high leverage points. For our purposes of illustration we do not pursue this

point; see Davidian and Carroll (1986) for discussion on accounting for

leverage in estimation of 9.

The results of Table 5 show that the three estimates can vary greatly. As

a crude measure of this, consider the means and standard deviations of 9 and x
c

for the five data sets obtained by considering duplicates (ignoring the fact

',hat these data sets are not strictly independent). Below we list "relative

efficiencies" for the estimaturs basted on these crude measures:

"Relative efficiencies" for estimators of 9 and x
c

for data in example when M =2

LL to PL NM.L to PL LL to MMlL

9 .222 .351 .632

x .529 .659 .802
C

Qualitatively, the estimates exhibit the type of behavior predicted by the
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asymptotic theory: quantitatively, the values compare favorably with what the

theory would predict given the crudity of the comparison.

This example shows that there can be wide differences among the various

estimation methods for 9 and minimum detectable concentration in application

and that the qualitative way in which the differences manifest themselves is

predicted by the asymptotic theory of Section 3.

6. Incorporating unknowns and standards

in many assays, along with the known standards {Y ijxi} there is an

additional set {Y.,. of proportional size at unknown concentrations (xi}, i =

,j

...... N j 1 ...,M. . It is common to assume that these unknowns satisfy
1

* * 9e
(6. 1 Standard Deviations (Y..) = o,(E Y ij

The power of the log-linearized or modified likelihood methods is that they can

incorporate the responses at unknown concentrations to obtain a better est'mace

of 9; pseudo-likelihood and other similar techniques cannot easily incorporate

this information because they rely on knowing the concentrations {xi}. A

simple way to improve pseudo-likelihood to take into account the unknowns is to

incorporate the additional information about the variances in the unknowns by

exploiting an estimator that does not depend on the form of the mean response.

For the exposition here, consider the log linearized estimator; we ould

equally well employ the same idea using the modified maximum likelihood

estimator. Let 9 and 9 denote the log-linearized estimates of 9 based on

the unknowns alone or the full data respectively, and let 9PL denote the

%."

-.. .
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pseudo-likelihood estimate based on the standards alone. Let S2 denote the
U

variance estimate of 0 produced by the linear least squares program and let
2

SpL be the estimated variance of 9PL' where following Theorem I

sample variance of

2 1 standardized squared residuals r.
SPL ={4S )

Psample variance of log predicted
values log f(x.,3)

r.i= (Y.. - f(x i'}/)}'{f(xi,p) 1.
1 1311

Then a weighted estimate of 0 is simply

2/ 2 2
(6.2) = we PL (1-w)o , w = S ,(S u S ;

we prefer to replace G by 9 in (6.2). The weighted estimate (6.2) will

improve upon the log-linearized estimate 9 based on all the data, although
S,U

the degree of improvement will be smaller than that found in Sections 3 or 4.

For example, if there are exactly as many unknowns as standards and duplicates

are used, then 9 has asymptotic relative efficiency of 34% versus 20% whenS,U

only standards are available.

7. Discussion

S.

We have addressed the general issue of estimating calibration quantities

in assays which exhibit large amounts of heterogeneity. We have shown that not

weighting at all leads to large decreases in the efficiency of tnalysis. Even

*."- ****-. ". . . , . ",.. .' *. ", '4' '*- * - %' , .- ..'... , ,
. -.-.. - . '. .' . . -Z-.- .'. --- . . -- -' --- - . .-- .' ** ' A. '"-" ' " .".' -%

", -n r -, i "'" , k' "> "', ;:'S '.- ''. .",7". {.'.-,-' ' -, ,. ; , ,X ". " " -.7'' I, '" '
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when weighting is used, we have shown that changes in relative efficiency o'c '-

depending on the method of estimating the variances, especially the pararnete: 1

:n (1.3). The key point is that while for estimation of 3 the effect of how

one estimates the variance function is only second order, for estimation of

other quantilies such as minimum detectable concentration, the effect is first

order.

We have had success using the idea of pseudo-lIkelihood in C.a:'rol and

Ruppert (1982b); this method applies in general heteroscedastic models and iS
I.

easy to compute as shown in the appendix. although the reader should be aware

1-at it is not robust against outliers.

One can also consider data transformation rather than weighting. The

transform-both-sides idea in Carroll and Ruppert (1984) applies to the assay "a

problem.

2 o
I

""
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AnDendix

The analysis of the minimum detectable concentration is complicated by the

behavior of the derivative of f(x,A) with respect to A at x=0, especially for

the standard model (1.2). We will write f(x.A) = h(q,PC), where rq = e(x,,B), q

.(x ,.p) and q c  = f(x ,/ ). In the model (1.2), q = f(x,A) = exp(A 4  log x).

We assume throughout that f(O,C) > 0, and that all functions are sufficiently

smooth. Assume further that

(A. I ;- (0, ) - 0

w



(A. 2) 3/',3t7 h(0./3) =h 17(0,G) 0

(A. 30) P 1~3 0 C = 0 ;

(A. 4 If w -. 0 and v :s a random variable such that

p
(vC) C ( -,C 1. then

p
sup({ e -7(av-(l-a)w,pC) 'te1 (w,pC) - 1 1for 0<a<1 } --. 0

These assumptions are satisfied for the model (1.2) if P4> 0.

We need the following results. The proofs of Lemmas A.2 and A.3 will be

2
at the end of the appendix. Let c = z(a))

Lemma A.1 As a -# 0 for f(O,/3j > 0,

* a 2 1/2 9
t 0% c C(o ) ac (c/M) f(0){/'h0,)

* Proof: A Taylor series expansion of (3.2) in q7 and around zero. 0
C

* )=C(0N1/2 DfnLemma A.2 Assume that as N a -+ 0. (1 --'79 .Dfn

c c p

A = Ma {3f/,3i7 h(O,,a))} /{cf 20(0,P)}.

Then as X o a 0, if N 1 /2 (e- 9) = C, (1), we have the asymptotic expansion

(A.5) A.N 12(r7 - r7 * )/a
c C

'N1/2(a 2 _a )/o0 2 2{log f(0,/3)) N 1.2(9 -9) p (1). 0

Lemma A.3 Consider Lemma A.2. Then

4 ,. .4-..I
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( 1M)1 2 ( - 2 ,,2

- (NM) Z = (. 1) 2V(NM) (9 -) - ( p(1)

l,'2
so that if A0  M Al

A N~ (1 7 - t7 )!0
0 c c

-l1/2 N M 2 1/2
(NM) - I 1 . j (f.- 1) 2d (NM) (9-9) - p (1).i=1 j-l 1.) p

where d is defined in (3.3). 0

1/2 *Proposition I The iimit results (3.4) (3.6) hold for A0 N 02( -Tc )/a,

where 17c = 7 (L2. 7c (ML) or tc(PL).

Proof of Proposition 1 : From Davidian and Carroll (1986), using Theorem we

have that

1I2 L- I/2 1/2 N: q2 2-
N (92LL - 0) (1/2) N 1/2 N={log - E(log q2)) (v. "V) - p (1)

Li-Ii 1 1 p
12 1/-1/2 N 2 2

N (9MML 9) (1/2) LN z (q -E(qi)) (v. v) o (1)MM =1 i 1p

N1(pL - ) = (1/2) N- 1 / 2 M- 1 z (. 2 - 1 . -V) -,ap(1)
PL1 1 ij p

so that by Lemmas A.1 - A.3 and equation (A.5), we have

1 /2A N (7 c(PL) -q )/

(NM)- 1/2Z N M 2 2
i= j=1 ij - 0 i v p

which with the central limit theorem gives the same limit distribution as in

(3.6). We also have that-

r. % ',- , ~



24

17,2 1,-'2 N M 2A(N 07(LL) - t7 ) , = (NM) ( -1)
0 c i,,i = 1 ij

1,'2 -1/2 N 2 2
- d oM N Z (v i  v)log qi/av - C p(1)

1,'2 /2 N M 2
AON (q(MML) - 17*)/0 (NM) l =I '1(2 - I)

0 i = j1 iJ
1/2 - 1/ 2 N -2 2

- d M N Z i (v -=v)qiia - (1).

Simple central limit theorem calculations yield the same limit distribution as

ii, (3.4) and (3.5). 0

Remark: Result (3.5) is based on a obtained from the residuals of the final

fit of the mean response function as for the log-linearized method and

pseudo-!ikelihood, so that Lemma A.3 holds. The modified maximum likelihood

method also provides a joint estimate of o along with the estimate of e. If

one considers this estii,,ator in place of a in Lemma A.3. it can be shown that

the resulting estimator of minimal detectable concentration has even larger

asymptotic variance than that in (3.5). For reasons of space we do not prove

this. but it certainly has interesting implications for practice.

Proof of Theorem 2 By (A.5), for any of the estimators x , since t7 =f(x,),

we have the limit result that for some A.

(A.6) N / -  ((X ,# - (x c, - )/ PO N(O,,d) .-..-: ..

Thus, for ' between x and x , defining
cc c

= N I t(x Af3) (x - X ) , we havex c c c

I'..%
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WN ex(Yc x (x c 11 )  IN (0," 1.

where F (v,p) is the derivative of the first component of P.(v,). It thusx

suffices through (A.4) to prove that

C C
c c

But this folows from (A.6) since qc/C = e(xcC)/o -. a see Lemma A.1. The

result now follows from Propostion 1. 0

Proof of Lemma A.2: By a series of Taylor expansions and using Lemma A.1.

1/2 - ( , ))2 2(A.7) N (h(q, ) - h(',A) /o
1Nl2{h~~) h(, )2/ 2 - f(-1/12

= N (h(q Cp) h(O,p)} 2 /o (N

1 * 2 2= N {h(q ,/3) - h(O,)} /a

* * 1/2 * )2 N-2

2{/a/h( ,) - ( qc{/a7h' -,c/3) + N () q -~(

c c c c p

11/2 2 2

N1/2 ... f{(q ,/) - h(O,)) 2/a 2

c
* ~ ~ 1l/2~

- 2a c ( a /a h(O,,})} N (7c -q c)/ - Op(1)

2 1/2/2

Similar calculations taking into account that N / - /3) = p (a) and i7c 0P

yield
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(.28) 1  (2 h2 7 A 2 2

=1/2 29 h26 * 1/2/M 2 2 2
N1 h 0(7 c, ),'M h ('7 M/))(N ) - ) o 2

C C29 , 1/2(2/M)h e('7 ,,) {log h(t7c.,3)} N (9 - 9)

- (29/M)h 2  1 7 ,P )h ('7 /3) (qc(A - p) (1)

29 * )X/2 20 1/2
= {h e(qc,/)/M) -- (c'M) h (0'/)N (a - a)CF

CA

- (2c/M) h (0,C) (log h(0,p)) ,' X 2(9 - 9) -0 (1).

Combining (1.6), (3.2), (A.7) and (A.8) yields (A.5). 0

Proof of Lemma A.3: Define

-2 -1i 9 2 2 =N M 2
0 = (NM) zi z lYIy. f(xi,p)}/f (xi,/)] (NM) a Z _0 =1 j i I=1 j=1e ij,

1/2
Then, since (NM) (A - /3) = (1),

-M 2(-2 - )/o2 = (NM) 1/2 zN - (x / 2 (x ,P )

j j

-{i - f(x A 2 f 29 ( x
i  -2

-1/2 2N x }2/f2e
(A.7) =I1'M) ,2 . iv. - f(x 2, ,'f (x .A)

-(Yij - xi' l )} / f  (x
i , ) ]o - 2  p (1)

- -2v(NM) (9 - )- p (1),

completing the proof. 0

%I N-' v %:<>v
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TaleN

Three Estimates of the Variance Parameter 9

Monte-Carlo Bias

Log-linearized 0.15o 0.001

Pseudo-l ikelihood

1 0.045 0.022

2 0.000 0.001

e=3 0.004 0.000

Variance Relative to Pseudo-likelihood with e 2

M =2 M 4

Monte-Carlo Asymptotic Monte-Carlo Asymptotic

Log-linearized * 2.85 4.93 1.71 1.87

Pseudo-ilikelihood

f 1 0.99 0.99

31.00 1.00



100 x Mean Minimum Detectable Concentrations

M =2 M =4

Replicates Replicates

9 Known 6 Estimated 9 Known 9 Estimated

Unweighted Least 13.106 13.106 9.173 9.173
Squares

Log-Linearized 3.937 4.346 2.718 2.785

Pseudo-ilikel ihood

i= I - 4.216 - 2.809

'E 2 3.927 3.934 2.715 2.722

* ~ ~ . ,~- - - ~ ~ ~ F ~ * J.WL



Table *3

Ratio of Monte-Carlo Variance of the Estimate of

Minimum Detectable Concentration Relative to Pseudo-likelihood

with f = 2 Cycles

M = 2 Replicates M = 4 Replicates

9 Known 9 Estimated 9 Known 9 Estimated

:nweighted 14.90 8.46 18.83 13.72
Least Squares

Log-'I nearized 1.02 2.72 1.00 1.41

Pseudo-likelihood

1 - 1.19 1.10

4



Table *4

Data for Example of Section 5

Concentration (x) Response (Y)

0.000 1.700, 1.660, 1.950. 2.070

0.075 1.910. 2.270, 2.110, 2.390

0.1025 2.220. 2.250, 3.260, 2.920

0.135 2.800, 2.940, 2.380. 2.700

O .18 2.780, 2.640. 2.7!0, 2.33C

0.25) 3.540. 2.860, 3.150. 3,320

0.400 3.910, 3.830. 4.880, 4.210

0.550 4.540. 4.470. 4.790, 5.680

0.750 6.060, 5.070, 5.000. 5.980

i.000 5.840. 5.790. 6.100, 7.810

1.375 7.310. 7.080. 7.060. 6.8710

1.8,50 9.880, 10.120, 9.220, 9.960

2.500 11.040, 10.460. 10.880, 11.650

3.250 13.510, 15.470, 14.210, 13.920

4.500 16.070, 14.670, 14.780. 15.210

6.000 17.340. 16.850, 16.740, 16.870

8.250 18.980. 19.850. 18.750, 18.510

11.250 21.666, 21.218. 19.790, 22.669

15.000 23.206, 22.239, 22.436, 22.597

20.250 23.922. 24.871, 23.815, 24.871

27.500 25.748. 25.874. 24.907. 24.871

37.000 24.441. 25.871, 25.748, 27.270

50.000 29.580, 26.698. 26.536. 27.!8!



Table #5

Estimates of 0, a and x based on example of Section 5C

Leas'. Pseudo- Log- Modified

Squares iike:ihood f=2 Linearized Max. Likelihood

x ~ x x 9 x9

Full .1554 .0790 .4750 .0793 .4757 .0822 .4500

Dupli-

cates

1 & 2 .2230 .0728 .7000 .0476 .9404 .0659 .7500

2 & 3 .2385 .1555 .3500 .1870 .1950 .1739 .2500

3 & 4 .2513 .1324 .5750 .1112 .6940 .1104 7000

1 & 4 .1593 .0612 .5500 .0601 .5931 .0695 .5000

I & 3 .1859 .0938 .4500 .0981 .4233 .0909 .4750

Mean .2116 .1031 .5250 .1008 .5692 .1021 .5350

SD .0763 .0357 .1183 .0491 .2511 .0439 .1997

Note: Means and SDs are based only on the five reduced permutations of the

data with duplicates.
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